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Active playful experience with mathematical structures can
lead to a type of understanding ...

“The fact that many less children were able to give explicit
evaluations of the tasks than did adults, coupled with the fact
that their mean performances were entirely comparable ...
shows that verbalizations were not necessary ... the final test
of whether a child understands a structure is his ability to
handle that structure ...” '

Dienes and Jeeves 1965 p 96

An intuitive understanding can (and maybe should) arise
before an explicit one.



Implicit learning

People learn to make decisions on a task more accurately or more
quickly without being able to justify their decisions adequately.

OR:
The learning process by which people come to acquire implicit
(unconscious) knowledge.

Consider:
Acquisition of natural language, social skills, musical appreciation,
many practical skills
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1967 “implicit learning”

An example of a “finite state grammar” used for generating
stimuli in artificial grammar learning experiments

People learn to classify test items though find it hard to
describe relevant rules
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1. VXTTTV
2. MVRTR
3. MVRXRM
4. MTVT

5. MTRVRX
6. VXRM

7. VRV XV

8. MXRRM
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Donald Broadbent

Investigated implicit knowledge in
the 1970s — 90s
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[0] -> M[1]
[1] ->T[1]

[1] ->Q[2]
[2] -> B[1]

[2] -> €

uhwheE

[0], [1], [2] are non-terminals

Finite state grammar

Example string:
MI[1]

-> MT[1]

-> MTT[1]

-> MTTQ|[2]

-> MTTQ



MTTV
People learn:
Chunks: MT, TT, TV, MTT, TTV

Repetition structure: 1223 (so they can classify KXXV as
grammatical)



Training phase -> knowledge of structure of training items
(structural knowledge)

Test phase -> knowledge that an item does or does not have that
structure (Judgment knowledge)



Presumably, conscious structural knowledge leads to conscious
judgment knowledge

But if structural knowledge is unconscious, judgment knowledge
could be conscious or unconscious.

Consider natural language: If shown a sentence one can know it is
grammatical and consciously know that it is grammatical, but not
know at all why it is grammatical



If both structural knowledge and judgment
knowledge unconscious => phenomenology is of
guessing

If structural knowledge unconscious but judgment
knowledge conscious => phenomenology Is of intuition
(cf natural language)

In both cases, we have unconscious structural
knowledge.

In second case, people know that they know.



Dienes & Scott 2005:; Scott & Dienes, 2008

Judgment knowledge: Knowledge that a string is rule governed
Structural knowledge: Knowledge that enabled that judgment

Structural
/ rowlere \
Conscious Unconscious
Judgment Judgment
Knowledge Knowledge \
Conscious Conscious Unconscious
“‘Rules” “Recollection” “Intuition” “Familiarity” “Guess”
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Social intuition as a form of implicit learning: Sequences of body
movements are learned less explicitly than letter sequences

k Elisabeth Norman'2 and Mark C. Price!

»  Author information = Article notes » Copyright and License information Disclaimer

Unconscious structural knowledge: 55% (2%)
Conscious structural knowledge: 47% (4%)



People trained in one domain can apply unconscious
knowledge to a hew one

Altmann Dienes & Goode 1995:
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There is a mechanism that can determine structure through
perceptual variability



Neural network models:

Output units: prediction of
which letter will be next

Activation flows along the
weights according to their
value (synaptic strength);
the value is changed with
learning so that the output
better matches reality

Pattern of
weights codes
knowledge of
sequential
regularities

YR
hG)
Input units: pattern of activation

codes e.g. which letter is currently
focused on



The Simple Recurrent Network
(SRN) of Elman 1991

Output units

Hidden units
copy

Input units Context units

SRN come to have a memory and can learn indefinitely
into the past
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Figure 3. Modification of the SRM to enable transfer between different domains (D1 and D2).



MTTV
People learn:
Chunks: MT, TT, TV, MTT, TTV

Repetition structure: 1223 (so they can classify KXXV as
grammatical)






Rapid detection of a face or behind with mirror symmetry might be useful?
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Tenzin, Trinley, Tumpo wore

A2
Al
Al A2 A3 -B1B2B3 A3 Cross serial
dependency/
g3 mirror inversion
Bl
B2

yellow, black, red hats, respectively



The bamboo the panda ate was fresh
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Retrograde symmetry:

A1A2A3-B3B2B1

1. [0] -> Ai[O]Bi
2. [0]->¢

(where [0] is a non-terminal)

Context free grammar

Inverse symmetry:
A1A2A3-B1B2B3

1. [0]-> Ai [0] [i]
2. [0]->¢

3. Ai[j]-> AiBj
4. Bjli] ->[i] Bj

(where [0], [i] are non-terminals)

Context-sensitive grammar



Symmetry seems to be processed automatically

and to be relevant for homo sapiens: mate selection,
aesthetics, language
It is not an arbitrary rule but one with ecological significance

Yet it requires a learning device more complex than finite state

Friedierci: Maybe different neural regions (Broca vs
Operculum) process finite vs supra-finite state structures



Kuhn and Dienes 2005

Grammatical Tune showing inversion
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Kuhn & Dienes 2005

Liking ratings

Mean liking Ratings
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Kuhn and Dienes 2008

Output units

Hidden units
copy

Input units Context units

SRN learns fixed length long distance associations.
Have either subjects or SRN learnt a symmetry?

Need to show generalisation to new lengths.
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Abstract

The dominant theory of what people can learn implicitly 1s that they learn chunks of adjacent elements
in sequences. A type of musical grammar that goes beyond specifying allowable chunks 1s provided by
serialist or 12-tone music. The rules constitute operations over vanables and could not be appreciated
as such by a system that can only chunk elements together. A senies of studies investigated the extent to
which people could implicitly (or explicitly) leamn the structures of serialist music. We found that people
who had no background in atonal music did not learn the structures, but highly selected participants
with an interest in atonal music could implicitly leamn to detect melodies instantiating the structures. The
results have implications for both theorists of implicit learning and composers who may wish to know
which structures they put into a piece of music can be appreciated.
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Mechanisms of
Implicit Learning

Axel Cleeremans

SRN as a “graded finite state” processor

SRN has a memory buffer — can it be a graded context-free
or context sensitive processor?

Rodrigues Wiley & Elman 1999: SRN exposed to a*n b”n
(ab, aabb, aaabbb, ...) can develop a counter and thereby
generalize to untrained lengths



Rule learning

Statistical learning
Simple associative learning



SRN as a bridge

—

Rule learning

Statistical learning
Simple associative Iearning

The SRN CAN learn mterestlng rules in a graded way — but not
guaranteed.
What it can learn is an empirical non-obvious question.



Tang poetry

Xiuyan Guo, Shan Jiang, Feifei Li,
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Tang poetry:

Divides Chinese tones (1-4) into two
categories:
ping (1,2) and ze (3,4)

And specifies an inversion relation in
successive lines:

tonal syllable string ning  lai  zoéu zhdn hul tb gud qin cadn ér
I | I I | I | I | I
tone type string ping ping ze ze ping ze ze ping ping ze




Other

46.872




Jiang et al 2012

Materials:
Inverses and non-inverses balanced in terms of:

chunk strength, mean feature frequency, repetition structure
all at the level of:
Syllables, tones, tone types

Training:
S repeated back 48 strings, 3 times

Test:

1. Each of 32 test strings judged as rule governed or not
2. Structural attribution judgment: Random, Intuition,
Recollection, Rules



074 B experimental group
' O control group

0.6 1 |_*_|

percentage of correct responses

implicit attribution explicit attribution
25% random 45% intuition

Unconscious structural
knowledge

20% memory 10% rules
Conscious structural knowledge

People acquired unconscious structural knowledge of a tonal
inversion



Percentage of correct responses

[ Experimental group
0.7 O Control group

sl 17 | —*

Inversion Retrograde

Guess 23% Guess 34%
Intuition 77% Intuition 66%



Z-stores

people

1.5

1.0

0.5

0.5+

Z-scores

00+
inversion retrograde

0.5 T T
Inversion Retrograde

Like people, SRN characteristically finds inverse easier than retrograde and can
learn both



What has been learnt?
Two theories:

1. The symmetry per se, i.e. length can be treated as a variable by
the system

2. Prediction over a fixed distance (Kuhn & Dienes 2008)

Test:
Can people/models generalize to inversions of different length?



tonal syllable string  zhan3 sheng1 xi3  jun4 ning2 guo3 jul hui1
| I I I I I

tone type string ze ping ze zZe ping ze ping ping
l ]I | | |
B-length
tonal syllable string  sheng1 qin2 er3 weid huit xi3 tud4 lai2 can1 guo3
| I | I | I I I I |
tone type string ping ping ze ze ping ze ze ping ping ze
l I I | ‘
10-length

tonal syllable string huil jun4 wei4 bo2 tu4 zou4  zhan3 ning2 can1 er3 lai2 gin2
I I I I I I I I | [ I
tone type string ping ze ze ping ze ze ze ping ping ze ping ping

l | | [ I

12-length



percentage of correct responses

Attributions:
99% implicit

B experimental group
0.7 o control group
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Z-stares
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Conjecture:

The SRN only learns to generalize to different lengths
because of exposure to different lengths in the test
phase

The SRN, as much as children, obeys the pedagogical
principle of mathematical variability



The interplay between implicit and explicit learning may be
pedagogically important

Pure implicit learning can (and can be modelled to)

learn complex structures,

detect structure through different perceptual
embodiments

generalize through exposure to the full range of the
functional form

It may thus form part of the process my grandfather was
investigating
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