A Gondolkodás Anatómiája – Diák pályázat
2. Nemzetközi Heurisztika Konferencia: Motivating, Orienting and Modeling Invention
Balatonfüred, 2019. augusztus 30-szeptember 1
http://heurisztika.btk.mta.hu/
Hogyan viszonyulnak egymáshoz szavaink és gondolataink a matematikai probléma-megoldás folyamatában? Hogyan haladnak gondolatmeneteink megoldásaink felé? Hogyan tudjuk gondolatainkat „kitenni” a fejünkből úgy, hogy mások is értsék képzeteinket és követni tudják érvelésünket?
A 2. Nemzetközi Heurisztika Konferencia Balatonfüreden kerül megrendezésre 2019. augusztus 30-szeptember 1-én Motivating, Orienting and Modeling Invention témában. A konferencia diákprogramjába, A Gondolkodás Anatómiája címmel, egyéni valamint csoportos pályázatokat várunk magyar, vagy angol nyelven, melyben a résztvevők megjelenítik személyes, vagy közös barangolásukat saját, eredeti megoldásaikhoz vezető útjaikon úgy, hogy mások minél jobban megértsék, hogyan jutottak első gondolataiktól a konklúziókhoz: hogyan értek, vagy nem értek el egy megoldásig.
A pályázathoz kapcsolódó kutatásban azt vizsgáljuk, hogy milyen szerepet játszanak tárgyiasult eszközeink, mozdulataink, vagy akár megtestesített műveleteink problémamegoldó tevékenységünk bemutatásában és kifejtésében. Milyen előadói és tudás-szervező módszerek, modellek, demonstrációs és kifejező eszközök segítenek tetten érni és megragadni a döntő fordulatokat, hogyan tudjuk megjeleníteni az új felfedezésekhez és belátásokhoz vezető utat?
A pályázók saját maguk választhatják meg, milyen eszközöket használnak „Gondolataik Anatómiájának” megértetésére és megjelenítésére. Mindenki maga dönti el, mit talál a legjobb módszernek és technikának az erre a célra a tollal papíron, vagy okos táblán ábrázolt vizualizációktól, vagy párbeszédek videó felvételeitől a gondolkodást támogató digitális környezeteken át a személyes, virtuális, vagy csoportos prezentációkig. Minden olyan részlet, felismerés, lépés dokumentálása, bemutatása segíti a kutatást, ami szerepet játszott a megoldás megtalálásában.
Jelen kiírás csak a problémákat veti fel és néhány olyan felhasználható eszközt javasol a szóba jövő lehetőségek tárházából, ami hasznos lehet. A pályázóktól azt várjuk, hogy önállóan keressék meg a nekik leginkább megfelelő eszközöket, melyekkel a legjobban tudják a meglátásaikhoz vezető utat bemutatni. Szívesen látunk egyéni, vagy csoportos élő előadásokat éppúgy, mint bármilyen adathordozón rögzített beküldött pályamunkákat. Minden pályázótól pontosan egy kitűzött feladat és egy szabadon választott matematikai probléma megoldásának feldolgozását kérjük. A beküldött anyagokat, illetve a jelentkezéseket személyes előadásra a részletes pályázati feltételeket megadó konferencia fenti honlapján megadott módon várjuk, a meghosszabított 2019. augusztus 25. (24:00) határidőig.
A zsűri nem a megoldásokat magukat fogja értékelni, hanem annak az erőfeszítésnek a sikerességét, mellyel a pályázók megpróbálják problémamegoldásukat megértetni, követhető módon reprodukálva gondolkodásuk folyamatát. A zsákutcák bemutatását éppúgy értékelni fogja, mint az új felfedezéseket, és a lényeg nem önmagában a megoldások megtalálása, hanem annak kifejtése, hogy a pályázók miért, vagy miért nem találták azt megoldásnak és hogyan jutottak odáig.
A kitűzött problémák nem megoldandó szöveges feladatok előre adott megoldásokkal, hanem inkább olyan kihívások, melyek lehetőséget adnak arra, hogy számot adj róla, hogyan birkóztál meg velük.
Minden pályázótól egy kitűzött és egy szabadon választott probléma megoldásának bemutatását várjuk. A kitűzött problémákat 2019. július 15-én tesszük közzé a konferencia fenti honlapján és a prezentációkra való jelentkezést, illetve azok beküldését az alábbiakban meghatározott részletes pályázati feltételeknek megfelelően kérjük 2019. augusztus 25, 24:00-ig.
Példaképpen javasolt felhasználható eszközök:
https://www.geogebra.org/?lang=hu
http://www.visual-literacy.org/periodic_table/periodic_table.html
https://debategraph.org/Stream.aspx?nid=61932&vt=ngraph&dc=focus
https://www.nchsoftware.com/software/recording.html
https://www.sodapdf.com/blog/best-free-recording-software/
https://www.thepodcasthost.com/editing-production/producing-editing-an-audio-drama-podcast/
https://play.google.com/store/apps/details?id=ru.knnv.geometrycalcfree&hl=en_US
Pályázati feltételek
A 2019. augusztus 25. 24:00 óráig (meghosszabított határidő) beérkező pályázatokat vesszük figyelembe. Pályázni a Ez az e-mail-cím a szpemrobotok elleni védelem alatt áll. Megtekintéséhez engedélyeznie kell a JavaScript használatát. e-mail címre küldött jeligés jelentkezéssel lehet az alábbiak szerint.
A pályázó(k) egy jelszóval védett, a jeligét dekódoló Word doc, vagy docx kiterjesztésű, avagy PDF fájl beküldésével jelentkezhetnek, mely tartalmazza
1) a pályázók nevét,
2) születési dátumát,
3) elérhetőségét (e-mail címét, s amennyiben megadja, telefon számát),
4) iskolájuk, ill., oktatási intézményük megnevezését,
5) évfolyamukat, valamint
6) (legalább egy) tanáruk/oktatójuk nevét, és
7) elérhetőségét.
A jelszót csak az értékeléskor kell majd közölni. A fájlnévben kérjük megadni a jeligét, melyre minden további beküldött anyagban hivatkoznak!
A pályázó(k)tól egy kitűzött feladat és egy saját maguk által választott feladat megoldásának feldolgozását várjuk, saját megoldás alapján. A feldolgozás nyelve angol, vagy magyar lehet.
Egy másik, csak a jeligét feltüntető, de a pályázó(k) nevét nem tartalmazó (jelszóval nem védett) a pályázat tartalmát leíró Word, ill., PDF fájlban kérjük beküldeni, hogy melyik kitűzött feladatot választották, továbbá a szabadon választott feladat leírását, valamint a feldolgozás módját. (A két feladat feldolgozásának módja lehet különböző, sőt lehet az egyik előre beküldött digitális anyag, a másik személyes prezentáció.) Digitális feldolgozás esetén kérjük megadni a használt szoftvereket, eszközöket!
A problémák megoldásának feldolgozása történhet
1) digitális formában, oly módon, ahogy a feldolgozás módját a beküldött pályázat tartalmát leíró Word, vagy PDF fájlban a pályázó meghatározza, vagy
2) személyes prezentáció formájában a 2019. szeptember 1-én délelőtt 10h-kor kezdődő
“How is it possible to invent such a solution?” - An Anatomy of Thought
című diákprogram részeként Balatonfüreden, a Vaszary Galériaban A személyes prezentációra rendelkezésre álló idő max. 12 perc. A prezentációkat, hozzájárulás esetén, videón rögzítjük.
Személyes prezentáció esetén is lehetséges önállóan választott digitális eszközöket (notebook, szoftverek, projektor, stb.) használni. A használni kívánt eszközöket kérjük a beküldött jeligés, a pályázat tartalmát leíró (Word, vagy PDF) fájlban meghatározni!
Az elkészült digitális anyagokhoz a pályázó(k)nak legkésőbb 2019. augusztus 15-től kezdődően (legkésőbb augusztus 25-ig) kell értékelésre hozzáférést biztosítani, pl., az anyagokat, pályamunkákat Google Drive-ra feltölteni és a Ez az e-mail-cím a szpemrobotok elleni védelem alatt áll. Megtekintéséhez engedélyeznie kell a JavaScript használatát. –al megosztani, vagy hasonló más megoldást, (pl., Dropbox) választani.
A működő hozzáférés, és a lejátszhatóság, letölthetőség biztosítása a pályázó felelőssége.
A beérkezett pályázatok értékelésére 2019. szeptember 1-én kerül sor, Balatonfüreden, a Vaszary Galériaban A sikeres pályázatokat oklevéllel ismerjük el, és a kiemelkedő pályázatokat összesen, minőségtől és pályázók számától függően, 50-100.000 Ft értékű összdíjazásban részesítjük.
Kitűzött problémák:
- Szerkesszünk háromszöget, amelynek területe megegyezik egy előre megadott négyszög területével. Keress különböző háromszögeket és minél több megoldást! Magyarázd meg a szerkesztés menetét, hogy miért helyes, és hogy hogyan jöttél rá! Általánosítási kihívás: Hogyan lehetne megszerkeszteni egy olyan háromszöget, amelynek területe egy előre megadott sokszög (ötszög, hatszög, stb.) területével egyenlő?
- Egy fogadáson 100 nagykövet vesz részt. Mindegyiküknek legfeljebb 49 ellensége van a fogadáson. Le lehet-e ültetni a nagyköveteket egy kerek asztalhoz oly módon, hogy egyikük se üljön olyan nagykövet mellé, aki az ellensége? Hogyan lehet erre rájönni?
- Ágnes reggelente ugyanazon az útvonalon fut ugyanabban az idősávban. Útja egy olyan hídon is keresztülhalad, amelyen egy vasútvonal is átvezet. Minden reggel a hídon átzakatol egy személyvonat, miközben Ágnes átfut a hídon. Tudja, hogy a mozdony pontosan akkor füttyent, amikor ő a híd 3/8-ánál tart. Ágnes már többször tapasztalta, hogy ha ekkor maximális sebességre kapcsol, a vonattal egyszerre érnek a híd végéhez. Másrészt, ha a füttyszót hallva sarkon fordul és szintén maximális sebességgel visszafut, a vonattal pontosan a híd elejénél találkoznak. Ágnes „maximális sebessége” óránként 7 mérföld. Milyen gyors a vonat?
- Egy n>2 létszámú csoportot illetően két tényezőt ismerünk: a párkapcsolatok számát és a párkapcsolatokon belül az egy szaporodási ciklusban születő utódok számának átlagát.
a) Vizsgáljuk meg (n, m és k függvényében) a csoport „hosszú távú” (legalább m>2 ciklus) fennmaradásának feltételeit, ha a csoport tagjainak átlagos életkora k
b) Milyen további tényezőktől függhet a megoldás és hogyan? Pl., mi a helyzet, ha nemcsak a születendő utódok számának átlagát, hanem konkrét eloszlását is ismerjük? Állítsunk fel e további tényezőket figyelembe vevő modelleket! - András 185 cm magas. Szeretne felfüggeszteni egy tükröt a fürdőszobájának falára oly módon, hogy a tükör előtt állva teljes egészében lássa magát. Segítsünk neki! Minél nagyobb a tükör, annál drágább. Mekkora egy ilyen tükör minimális hossza? Függ-e a megoldás a fürdőszoba méreteitől, s attól, hogy hogyan helyezik el a tükröt? Milyen hosszú az a legkisebb tükör, melyben András és 1m magas kislánya, Zsófi, egyaránt látja magát?
+ Egy általad választott probléma megoldási kísérletének bemutatása.
Megjegyzés: Ha egy feladat nem egyértelmű, oldd meg az összes lehetséges értelemben! Tisztázd a problémákat, amiket közben megoldasz, rögzítsd és reprodukáld a megértésükhöz és megoldásukhoz vezető utat, magyarázd el és tedd mások számára is érthetővé a gondolatmenetet!
Mindebben segítségedre lehet Pólya György: A gondolkodás iskolája c. könyve:
Kellemes olvasást a Pólya György Emlékfa mellett Balatonfüreden a Tagore sétányon: